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Abstract 

Based on the mean-variance approach, Kraus and Litzenberger (1976) consider investors’ 

preference for the third moment and propose a two-factor pricing model, which includes 

systematic variance risk and systematic skewness risk. To distinguish from previous studies, 

this study incorporates option-implied information to construct systematic variance risk and 

systematic skewness risk. Through portfolio level analysis, we find a positive relationship 

between asset return and systematic variance risk, and a negative relationship between asset 

return and systematic skewness risk. Finally, cross-sectional regression results confirm the 

existence of risk premiums on systematic variance risk and systematic skewness risk. 
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1. Introduction 

The Capital Asset Pricing Model (CAPM) is derived based on the mean-variance 

approach proposed by Markowitz (1959) and it establishes a linear relationship between an 

asset’s return and its systematic risk. Based on the CAPM, there is only one pricing factor 

related to asset returns (i.e. beta, which measures the systematic market risk of an asset). That 

is, the CAPM assumes that investors only focus on the first two moments of return 

distribution and have no preference over higher moments. However, this assumption could 

conflict with asset price dynamics in capital markets.  

Some studies take higher moments into consideration and distinguish the preference for 

the third moment (i.e. skewness) by analyzing investors’ utility functions. Among these 

studies, Kraus and Litzenberger (1976) start with non-polynomial utility functions and derive 

a linear three moment asset pricing model on the basis of the CAPM. In their model, in 

addition to beta (which measures the systematic variance risk), there is another pricing factor 

gamma (which measures the systematic skewness risk). Gamma measures the co-movement 

between an individual asset’s excess return and the second moment of the market portfolio.
1
 

The results show that the systematic skewness is negatively related to asset returns so that the 

systematic skewness is an important factor in pricing risky assets. Later studies also 

document supportive evidence of a positive skewness preference (Scott and Horvath, 1980; 

Sears and Wei, 1985 and 1988; Fang and Lai, 1997; Harvey and Siddique, 2000). That is, 

investors require higher returns on assets with negative systematic skewness. 

                                                 
1 In Kraus and Litzenberger (1976), by using historical data, the second moment of the market portfolio is measured by 

 𝑅𝑀,𝑡 − 𝐸[𝑅𝑀,𝑡] 
2
. 
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After realizing the importance of systematic skewness in asset pricing, instead of using 

historical data, empirical studies try to incorporate forward-looking information to explain 

why systematic skewness is important and to shed light on the relationship between 

systematic skewness and asset return. Some studies use option-implied factors to measure the 

second moment of the market portfolio for gamma calculation. Ang, Hodrick, Xing and 

Zhang (2006) use daily innovations in VXO index as a proxy. The empirical results show that 

stocks with higher sensitivities to innovations in aggregate volatility have lower average 

returns. So, empirical findings in Ang, Hodrick, Xing and Zhang (2006) are consistent with 

the theoretical prediction. Chang, Christoffersen and Jacobs (2013) use daily innovations in 

VIX index to measure the second moment of the market portfolio. The empirical results show 

that the relationship between asset return and systematic skewness is sensitive to the length of 

horizon for gamma estimation. If systematic skewness risk is estimated during 1-month 

period, stocks with higher sensitivities to changes in VIX index have lower average returns. 

However, such a phenomenon cannot be observed if the systematic skewness risk is 

estimated during 6-month period.  

Furthermore, Chang, Christoffersen and Jacobs (2013) also look at the relationship 

between an asset’s return and its sensitivity to aggregate skewness. Stocks with higher 

sensitivities have significantly lower future returns. Such a negative relationship is robust no 

matter whether the sensitivity to aggregate skewness is estimated during previous 1-month or 

6-month period. So, aggregate skewness is important in asset pricing.  

Albuquerque (2012) decomposes the aggregate skewness into three parts: individual 
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firm’s skewness, the co-movement between a firm’s return and the return variance in other 

firms within the portfolio (i.e. 𝑐𝑜 − 𝑣𝑜𝑙), and co-movement between a firm’s return and the 

covariance between any other two firms within the portfolio (i.e. 𝑐𝑜 − 𝑐𝑜𝑣). The empirical 

results show that cross-sectional heterogeneity in firm announcement events (i.e. 𝑐𝑜 − 𝑐𝑜𝑣) is 

the main driver of the aggregate skewness. 

Based on previous literature, this study focuses on systematic variance risk (i.e. market 

beta) and systematic skewness risk (i.e. market gamma) of individual stocks. In the 

theoretical part, we decompose skewness of the portfolio in a different way compared with 

the method used in Albuquerque (2012). We stick to the two-factor model proposed by Kraus 

and Litzenberger (1976), and calculate beta and gamma by partially incorporating option-

implied information.  

Then, in the empirical part, we calculate option-implied beta and gamma for constituents 

of S&P 500 index, and investigate how beta and gamma relate to future asset returns. We 

study the relationship between asset return and beta or gamma through portfolio level 

analysis among constituents of S&P 500 index. We note that constructing portfolios on one 

factor does not allow us to control for effect of other risk factors. According to Kraus and 

Litzenberger (1976), beta and gamma are both calculated by using coefficients obtained from 

regressions using daily historical data (discussed in section 2.2.3). It is expected that option-

implied beta and gamma should be highly correlated cross-sectionally. Thus, we control for 

the effect of gamma (beta) when investigating the relationship between option-implied beta 

(gamma) and asset return by using a double sorting method. In our analysis, we also look at 
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different investment time horizons in order to see how predictive power of each pricing factor 

(i.e. beta or gamma) changes with time. Through portfolio level analysis, we can clearly see 

that beta and gamma are both important pricing factors with significant explanatory power. 

After confirming the relationship between portfolio return and option-implied beta or 

gamma through portfolio level analysis, we run Fama-MacBeth cross-sectional regressions at 

firm level to see whether beta and gamma gain significant risk premiums in cross-section of 

individual stock returns. In such analysis, we also include firm-specific control variables, 

such as size, book-to-market ratio, historical return during previous 12 to 2 months, historical 

return during previous 1 month, bid-ask spread and trading volume in previous one month. 

The inclusion of control variables enables us to ensure whether the predictive power of 

option-implied beta or gamma still persists after considering firm-specific risk factors.  

In addition, in order to make sure whether components of beta and gamma calculated by 

using option data have significant risk premiums, we use 25 portfolios constructed on size or 

book-to-market ratio to run two-stage Fama-MacBeth cross-sectional regressions. 

This study contributes to previous literature in two aspects. First, this study decomposes 

the aggregate skewness by using a different approach compared with what has been done in 

Albuquerque (2012). The method used in this study links the aggregate skewness to 

systematic skewness risk, which is captured by gamma in Kraus and Litzenberger (1976). 

This helps readers to better understand why skewness is important for asset returns.  

Second, based on Kraus and Litzenberger (1976), we calculate pricing factors, beta and 

gamma, by incorporating forward-looking information. Compared to historical data, option-
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implied information performs better in predicting future market conditions.
2
 Thus, beta and 

gamma calculated by using option data are expected to capture more relevant information 

about future asset returns.  

The remaining of this paper is organized as follows. Section 2 discusses data and 

methodology used in this study. Section 3 focuses on the portfolio level analysis by using a 

double sorting method to control for the effect of the other pricing factor. Section 4 shows 

results for cross-sectional regressions. The final section, section 5, offers some concluding 

remarks. 

 

2. Data and Methodology 

2.1 Data 

In this study, we focus on the S&P500 index. The S&P500 index is a capitalization-

weighted index of 500 stocks. Among constituents of S&P500 index, we investigate the 

relationship between asset return and systematic variance risk, beta, or systematic skewness 

risk, gamma. 

In order to do such analysis, daily and monthly stock data are downloaded from CRSP. 

The information about constituents of S&P500 index is available from Compustat. In 

addition, the option data for S&P500 index are downloaded from “Volatility Surface” file in 

OptionMetrics. The option data are available from the beginning of 1996. So, the sample 

                                                 
2 For example, Christensen and Prabhala (1998), Blair, Poon and Taylor (2001), Poon and Granger (2005), and Taylor, 

Yadav and Zhang (2010) show the outperformance of option-implied information in forecasting future volatility. French, 

Groth and Kolari (1983), Chang, Christoffersen, Jacobs and Vainberg (2012), and Buss and Vilkov (2012) incorporate 

option-implied information in beta estimation. The empirical results show that option-implied beta performs better than 

historical beta in explaining the relationship between risk and return. 
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period of our analysis starts from January 1996 until December 2012.  

 

2.2 Methodology 

2.2.1 The Two-Factor Model in Kraus and Litzenberger (1976) 

The CAPM is derived by assuming polynomial utility functions. Based on this 

assumption, the effect of higher moments could be ignored. However, such an assumption 

does not hold in real markets. Thus, one potential reason for the failure of the CAPM could 

be the omission of higher moments. If investors’ utility functions are non-polynomial, the 

effect of higher moments should be considered. Starting from this point, Kraus and 

Litzenberger (1976) claim that, in addition to beta, gamma (i.e. systematic skewness risk) is 

another pricing factor, which should be taken into consideration by investors.  

𝐸 𝑅𝑖 − 𝑅𝑓 = 𝑏1𝛽𝑖 + 𝑏2𝛾𝑖 (1) 

where 𝑅𝑖  is the return on an asset 𝑖, 𝛽𝑖 = 𝜎𝑖𝑀 𝜎𝑀
2  is the market beta or systematic standard 

deviation of an asset 𝑖, 𝛾𝑖 = 𝑚𝑖𝑀𝑀 𝑚𝑀
3  is the market gamma or systematic skewness of an 

asset 𝑖  (with 𝜎𝑀 =  𝐸   𝑅𝑀,𝑡 − 𝐸 𝑅𝑀,𝑡  
2
  

1 2 

 and 𝑚𝑀 =  𝐸   𝑅𝑀,𝑡 − 𝐸 𝑅𝑀,𝑡  
3
  

1 3 

), 

𝑏1 = (𝑑𝑊 𝑑𝜎𝑊 )𝜎𝑀 , and 𝑏2 = (𝑑𝑊 𝑑𝑚𝑊 )𝑚𝑀. 𝑏1 can be interpreted as the market price of 

beta, and 𝑏2 can be interpreted as the market price of gamma. Kraus and Litzenberger (1976) 

calculate beta and gamma for an asset 𝑖 by using historical daily return data on individual 

stocks and market portfolio: 

𝛽𝑖 =
  𝑅𝑀,𝑡 − 𝐸 𝑅𝑀,𝑡   𝑅𝑖,𝑡 − 𝐸 𝑅𝑖 ,𝑡  

𝑇
𝑡=1

  𝑅𝑀,𝑡 − 𝐸 𝑅𝑀,𝑡  
2𝑇

𝑡=1

 2  
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𝛾𝑖 =
  𝑅𝑀,𝑡 − 𝐸[𝑅𝑀,𝑡] 

2
 𝑅𝑖 ,𝑡 − 𝐸[𝑅𝑖 ,𝑡] 𝑇

𝑡=1

  𝑅𝑀,𝑡 − 𝐸[𝑅𝑀,𝑡] 
3𝑇

𝑡=1

(3) 

where 𝑅𝑀,𝑡  is the return on the market portfolio. Then, next sub-section discusses how 

systematic skewness risk links with aggregate skewness. 

 

2.2.2 Decomposition of Aggregate Skewness 

In Albuquerque (2012), under the assumption that the portfolio is constructed by using 

equal-weighted scheme, the non-standardized skewness (i.e. the central third moment, 𝑚𝑃
3) of 

the portfolio is decomposed into three components: firm skewness, 𝑐𝑜 − 𝑣𝑜𝑙 (comovements 

of an asset’s returns with the return variance of the other firms in the portfolio), and 𝑐𝑜 − 𝑐𝑜𝑣 

(comovements of an asset’s returns with the covariance between any other two assets’ 

returns):  

𝑚𝑃
3 = 𝐸   𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡] 

3
 

=
1

𝑁3
 

1

𝑇

𝑁

𝑖=1

  𝑅𝑖 ,𝑡 − 𝐸[𝑅𝑖 ,𝑡] 
3

𝑡

+
3

𝑇𝑁3
   𝑅𝑖 ,𝑡 − 𝐸[𝑅𝑖 ,𝑡]   𝑅𝑖′ ,𝑡 − 𝐸[𝑅𝑖′ ,𝑡 

2
𝑁

𝑖′≠𝑖

𝑁

𝑖=1𝑡

+
6

𝑇𝑁3
   𝑅𝑖 ,𝑡 − 𝐸[𝑅𝑖 ,𝑡]    𝑅𝑖′ ,𝑡 − 𝐸[𝑅𝑖′ ,𝑡  𝑅𝑙 ,𝑡 − 𝐸[𝑅𝑙 ,𝑡 (4)

𝑁

𝑙>𝑖′

𝑁

𝑖′>𝑖

𝑁

𝑖=1𝑡

 

Rather than using the decomposition method in Albuquerque (2012), in our study, we 

decompose skewness of the portfolio in another way. The non-standardized skewness of a 

portfolio can be decomposed as follows: 
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𝑚𝑃
3 = 𝐸   𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡] 

3
 = 𝐸   𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡]  𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡] 

2
 

= 𝐸    𝑤𝑖 𝑅𝑖 ,𝑡 − 𝐸[𝑅𝑖 ,𝑡] 

𝑁

𝑖=1

  𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡] 
2
 

=  𝑤𝑖𝐸  𝑅𝑖 ,𝑡 − 𝐸[𝑅𝑖 ,𝑡]  𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡] 
2
 (5)

𝑁

𝑖=1

 

where 𝑅𝑃,𝑡  is the return on the portfolio 𝑃, 𝑅𝑖 ,𝑡  is the return on an individual asset 𝑖 that is a 

constituent of the portfolio 𝑃, and 𝑤𝑖  is the weight for an individual asset 𝑖. From equation 

(5), we can see that the non-standardized aggregate skewness is the weighted average of co-

movements of an asset’s returns with the variance of the portfolio return. Decomposing the 

non-standardized skewness of a portfolio in this way helps us to better understand the 

relationship between aggregate skewness and systematic skewness risk. 

𝑚𝑃
3

𝑚𝑃
3 =

 𝑤𝑖𝐸   𝑅𝑖,𝑡 − 𝐸[𝑅𝑖 ,𝑡]  𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡] 
2
 𝑁

𝑖=1

𝐸   𝑅𝑃,𝑡 − 𝐸[𝑅𝑃,𝑡] 
3
 

=  𝑤𝑖

𝑁

𝑖=1

𝛾𝑖𝑃 = 1 (6) 

where 𝛾𝑖𝑃  is defined in the same way as in Kraus and Litzenberger (1976) and it measures the 

systematic skewness risk of an asset 𝑖. From this equation, we can see that gamma of the 

portfolio, which is equal to one, is the weighted-average of gammas on all constituents in that 

portfolio. Therefore, gamma is a linearly additive pricing factor as beta. On the basis of our 

decomposition, we wonder whether the predictive power of aggregate skewness could be due 

to gamma, which is a proxy of systematic skewness risk. So, in our study, we investigate the 

relationship between asset return and systematic skewness risk (i.e. gamma) rather than that 

between asset return and aggregate skewness. 
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2.2.3 Beta and Gamma Calculation by Using Option Data 

In addition to beta and gamma calculation shown in equations (2) and (3), Kraus and 

Litzenberger (1976) propose another way to estimate beta and gamma. In the first step, 

excess return of an individual asset should be regressed on market excess return and the 

squared deviation of the market excess return from its expected value: 

𝑅𝑖 ,𝑡 − 𝑅𝑓 ,𝑡 = 𝑐0𝑖 + 𝑐1𝑖 𝑅𝑀,𝑡 − 𝑅𝑓 ,𝑡 + 𝑐2𝑖 𝑅𝑀,𝑡 − 𝐸[𝑅𝑀,𝑡] 
2

(7) 

After obtaining coefficients (i.e. 𝑐1𝑖  and  𝑐2𝑖) from time-series regressions by using historical 

data, the market beta and gamma for each individual asset could be calculated by using the 

following two equations: 

𝛽𝑖 = 𝑐1𝑖 + 𝑐2𝑖 𝑚𝑀
3 𝜎𝑀

2  (8) 

𝛾𝑖 = 𝑐1𝑖 + 𝑐2𝑖  𝑘𝑀
4 −  𝜎𝑀

2  2 𝑚𝑀
3  (9) 

where 𝜎𝑀
2  is the variance of the market portfolio (𝜎𝑀

2 = 𝐸   𝑅𝑀,𝑡 − 𝐸 𝑅𝑀,𝑡  
2
 ), 𝑚𝑀

3  is the 

central third moment of the market portfolio (𝑚𝑀
3 =  𝐸   𝑅𝑀,𝑡 − 𝐸 𝑅𝑀,𝑡  

3
 ) and 𝑘𝑀

4  is the 

central fourth moment of the market portfolio (𝑘𝑀
4 =  𝐸   𝑅𝑀,𝑡 − 𝐸 𝑅𝑀,𝑡  

4
 ). Previous 

empirical studies support that option-implied data incorporate forward-looking information 

and they are more efficient in reflecting future market conditions. Thus, rather than 

calculating beta and gamma by using historical data, we calculate beta and gamma under the 

risk-neutral measure by incorporating option-implied information. In order to do this, we 

estimate 𝜎𝑀
2 ,  𝑚𝑀

3  and 𝑘𝑀
4  by using option data. 
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2.2.4 Central Moments Calculation under Risk-Neutral Measure 

In order to calculate 𝜎𝑀
2 ,  𝑚𝑀

3 and 𝑘𝑀
4  under risk-neutral measure, we apply the method 

derived in Bakshi, Kapadia and Madan (2003). We first calculate prices for the volatility, the 

cubic and the quartic contracts (i.e. 𝑉 𝑡, 𝜏 , 𝑊 𝑡, 𝜏  and 𝑋 𝑡, 𝜏 , respectively) by using out-

of-the-money call and put options. 

𝑉 𝑡, 𝜏 =  
2  1 − 𝑙𝑛  

𝐾
𝑆 𝑡 

  

𝐾2

∞

𝑆 𝑡 

𝐶 𝑡, 𝜏; 𝐾 𝑑𝐾 +  
2  1 + 𝑙𝑛  

𝑆 𝑡 
𝐾   

𝐾2

𝑆 𝑡 

0

𝑃 𝑡, 𝜏; 𝐾 𝑑𝐾 (10) 

𝑊 𝑡, 𝜏 =  
6 𝑙𝑛  

𝐾
𝑆 𝑡 

 − 3  𝑙𝑛  
𝐾

𝑆 𝑡 
  

2

𝐾2

∞

𝑆 𝑡 

𝐶 𝑡, 𝜏; 𝐾 𝑑𝐾

−  
6 𝑙𝑛  

𝑆 𝑡 
𝐾  + 3  𝑙𝑛  

𝑆 𝑡 
𝐾   

2

𝐾2

𝑆 𝑡 

0

𝑃 𝑡, 𝜏; 𝐾 𝑑𝐾 (11) 

𝑋 𝑡, 𝜏 =  
12  𝑙𝑛  

𝐾
𝑆 𝑡 

  
2

− 4  𝑙𝑛  
𝐾

𝑆 𝑡 
  

3

𝐾2

∞

𝑆 𝑡 

𝐶 𝑡, 𝜏; 𝐾 𝑑𝐾

+  
12  𝑙𝑛  

𝑆 𝑡 
𝐾   

2

+ 4  𝑙𝑛  
𝑆 𝑡 
𝐾   

3

𝐾2

𝑆 𝑡 

0

𝑃 𝑡, 𝜏; 𝐾 𝑑𝐾 (12) 

Then, by using 𝑉 𝑡, 𝜏 , 𝑊 𝑡, 𝜏  and 𝑋 𝑡, 𝜏 , we can calculate model-free central moments. 

 𝜎𝑀
2  𝑄 = 𝑒𝑟𝜏𝑉𝑖 ,𝑡 𝑡, 𝜏 − 𝜇𝑖 ,𝑡 𝜏 

2 (13) 

 𝑚𝑀
3  𝑄 = 𝑒𝑟𝜏𝑊𝑖,𝑡 𝑡, 𝜏 − 3𝜇𝑖 ,𝑡 𝜏 𝑒

𝑟𝜏𝑉𝑖,𝑡 𝑡, 𝜏 + 2𝜇𝑖 ,𝑡 𝜏 
3 (14) 

 𝑘𝑀
4  𝑄 = 𝑒𝑟𝜏𝑋𝑖 ,𝑡 𝑡, 𝜏 − 4𝜇𝑖 ,𝑡 𝜏 𝑒

𝑟𝜏𝑊𝑖,𝑡 𝑡, 𝜏 + 6𝑒𝑟𝜏𝜇𝑖,𝑡 𝜏 
2𝑉𝑖 ,𝑡 𝑡, 𝜏 − 3𝜇𝑖 ,𝑡 𝜏 

4 (15) 

where 

𝜇𝑖 ,𝑡 𝜏 = 𝑒𝑟𝜏 − 1 −
𝑒𝑟𝜏𝑉𝑖,𝑡 𝑡, 𝜏 

2
−

𝑒𝑟𝜏𝑊𝑖,𝑡 𝑡, 𝜏 

6
−

𝑒𝑟𝜏𝑋𝑖 ,𝑡 𝑡, 𝜏 

24
(16) 

Thus, option-implied 𝛽𝑖  and 𝛾𝑖  can be calculated by using the following two equations: 

𝛽𝑖
𝑄 = 𝑐1𝑖 + 𝑐2𝑖  

 𝑚𝑀
3  𝑄

 𝜎𝑀
2  𝑄

  17  
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𝛾𝑖
𝑄 = 𝑐1𝑖 + 𝑐2𝑖  

  𝑘𝑀
4  𝑄 −   𝜎𝑀

2  𝑄 2 

 𝑚𝑀
3  𝑄

 (18) 

We use the option-implied beta and gamma (𝛽𝑖
𝑄

 and 𝛾𝑖
𝑄

) in our empirical analysis. 

 

2.2.5 Discussion on Option-Implied Gamma 

As discussed in the introduction section, some previous studies try to incorporate option-

implied information to calculate beta and gamma. In Ang, Hodrick, Xing and Zhang (2006), 

the daily innovation in VXO index is a proxy of the second moment of market portfolio: 

𝐸 𝑅𝑖 − 𝑅𝑓 = 𝛼 + 𝛽𝑖 𝑅𝑀 − 𝑅𝑓 + 𝛾𝑖∆𝑉𝑋𝑂 (19) 

where 𝛾𝑖  is actually a proxy of systematic skewness risk. Similarly, Chang, Christoffersen, 

and Jacobs (2013) use a similar way to incorporate forward-looking information by using the 

daily change in VIX index: 

𝐸 𝑅𝑖 − 𝑅𝑓 = 𝛼 + 𝛽𝑖 𝑅𝑀 − 𝑅𝑓 + 𝛾𝑖∆𝑉𝐼𝑋 (20) 

𝐸 𝑅𝑖 − 𝑅𝑓 = 𝛼 + 𝛽𝑖 𝑅𝑀 − 𝑅𝑓 + 𝛾𝑖∆𝑉𝐼𝑋 + 𝛿𝑖∆𝑆𝐾𝐸𝑊 + 𝜃𝑖∆𝐾𝑈𝑅𝑇 (21) 

Thus, the systematic skewness risk in these two studies can be written as: 

𝛾𝑖 =
𝑐𝑜𝑣(𝐸 𝑅𝑖 − 𝑅𝑓 , ∆𝜎𝑀

𝑄)

𝑣𝑎𝑟(∆𝜎𝑀
𝑄)

(22) 

Compared to previous literature, this study incorporates model-free central higher moments 

in a different way. Rather than changing the explanatory variables reflecting the second 

moment of the market portfolio return, we stick to the original model setting proposed by 

Kraus and Litzenberger (1976). In addition to risk-neutral variance, the method used in this 

study also includes risk-neutral skewness and kurtosis. We believe that our option-implied 

risk factors incorporate more useful information. Details about empirical results are presented 
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in the following section. 

 

3. Results for Portfolio Level Analysis 

Previous literature provides a vast of supportive evidence that the aggregate skewness is 

an important factor related to asset return (Chang, Christoffersen and Jacobs, 2013; etc). 

Based on our decomposition, we wonder whether the effect of the aggregate skewness is due 

to the systematic skewness risk of each individual asset. We test whether gamma is an 

important pricing factor in addition to beta.  

We use options with different day-to-expiration to calculate option-implied beta and 

gamma, and assume that the length of investors’ holding periods should be the same as the 

day-to-expiration of options used for beta and gamma calculation.
3
 That is, time-to-expiration 

of options (i.e. the predictive period indicated by options) matches the length of investment 

horizons. We then use these option-implied beta and gamma in portfolio level analysis to 

analyze the relationship between portfolio return and option-implied beta or gamma. 

In addition, results for portfolio level analysis discussed in this section are obtained by 

using a double-sorting method. By using such a method, we control for the effect of the other 

risk factor in our analysis. For example, if we want to analyze the effect of option-implied 

beta on stock return, we first divide all stocks in our sample into five quintiles based on 

option-implied gamma. Within each gamma quintile, we further form five portfolios on the 

basis of option-implied beta. After constructing 25 portfolios, we construct new portfolios by 

                                                 
3  For example, if we use options with 91 day-to-maturity to calculate option-implied beta and gamma, the 

corresponding holding period will be 3-month. 
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equally weighting five portfolios with similar option-implied beta level across different 

option-implied gamma quintiles. Thus, in each new portfolio, we have stocks with different 

option-implied gammas. That is, we control for option-implied gamma when investigating 

the relationship between portfolio return and option-implied beta.  

In this section, we first have a look at different model-free moments. Then, section 3.2 

presents results for relationship between option-implied beta and portfolio return, and section 

3.3 discuss results for relationship between option-implied gamma and portfolio return. 

 

3.1 Description of Model-Free Moments 

In order to construct the proxy of systematic variance risk (𝛽𝑖
𝑄

) or systematic skewness 

risk (𝛾𝑖
𝑄

), we need to calculate central second, third and fourth moments for S&P500 index 

(i.e. 𝜎𝑀
2 , 𝑚𝑀

3  and 𝑘𝑀
4 ) under risk-neutral measure. We plot central moments in Figure 1 

[Insert Figure1 here] 

From the first panel, we can see how risk-neutral variance performs during the sample 

period. It is clear that (𝜎𝑀
2 )𝑄 is higher during dot-com bubble around 1999 and financial crisis 

in 2008 and 2009. The second moment of the S&P500 index translates to risk. Thus, 

aggregate volatility risk is always higher during crisis period.  

The second panel shows the variation of risk neutral third central moment. We can find 

that (𝑚𝑀
3 )𝑄 is always negative and its magnitude increases when the market is more volatile. 

During volatile period, the return distribution of S&P500 index becomes more negatively 

skewed. 
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Then, in the third panel, we can find that risk-neutral fourth central moment (i.e. (𝑘𝑀
4 )𝑄) 

becomes higher during the period of market crashes.  

From Figure 1, we can find that the pairwise correlation between any two of these three 

central moments are very high. By calculation, we can find that the correlation between 

(𝜎𝑀
2 )𝑄 and (𝑚𝑀

3 )𝑄  is -0.9670, the correlation between (𝜎𝑀
2 )𝑄  and (𝑘𝑀

4 )𝑄  is 0.9555, and the 

correlation between (𝑚𝑀
3 )𝑄 and (𝑘𝑀

4 )𝑄 is -0.9448. These three central moments are used for 

option-implied beta and gamma calculations. 

 

3.2 Double-Sorting Portfolio Analysis on Option-Implied Beta 

In the double-sorting portfolio level analysis, in order to make sure whether the 

significance of the relationship between portfolio return and option-implied beta is sensitive 

to the length of holding period, we assume that investors can hold their portfolios for various 

periods. Table 1 presents results for portfolios constructed on option-implied beta while 

controlling for option-implied gamma. 

[Insert Table 1 here] 

From the table, it is clear that, after controlling for option-implied gamma, average 

returns on “5-1” arbitrage portfolios are positive in all cases no matter how long the holding 

period is and no matter which weighting scheme is used for portfolio construction. However, 

we cannot find any significant relationship between portfolio returns and option-implied beta 

if the holding period varies from one month to nine months. If the holding period is extended 

to 12 months, we can find that the average return on the equally-weighted portfolio is 
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statistically significant and positive (2.95% p.a. with a p-value of 0.0493). That is, for long 

investment horizons, there is a significant and positive relationship between portfolio return 

and option-implied beta after controlling for option-implied gamma. 

 

3.3 Double-Sorting Portfolio Analysis on Option-Implied Gamma 

This sub-section concentrates on the relationship between portfolio return and option-

implied gamma by taking into consideration the effect of option-implied beta. The 

corresponding results are presented in Table 2.  

[Insert Table 2 here] 

In Table 2, we can easily find that, after considering the effect of option-implied beta, 

average returns on “5-1” arbitrage portfolios constructed on option-implied gamma are 

negative for all holding periods from one month to one year. However, in most cases, average 

returns are not statistically significant. Only for one-year investment horizon, if the arbitrage 

portfolio is constructed by using equally-weighted scheme, the average return on the 

arbitrage portfolio is -2.21% p.a. with a p-value of 0.0525. Thus, after controlling for option-

implied beta, there is a significant and negative relationship between portfolio return and 

option-implied gamma for long-term investment horizons.  

From the results presented in this section, we can see that, after taking the correlation 

between option-implied beta and gamma into consideration, for 1-year horizon, option-

implied beta is positively related to asset returns, while option-implied gamma is negatively 

related to asset returns. Such results are consistent with what relevant theory predicts. 
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4. Results for Fama-MacBeth Cross-Sectional Regressions 

4.1 Results for Firm-Level Cross-Sectional Regressions  

To assure whether option-implied beta and gamma are priced in cross-section of stock 

returns, we run cross-sectional regressions. In above analysis, option-implied beta and 

gamma are calculated for each individual constituent of the S&P500 index. So, we use firm 

level cross-sectional regressions. We regress returns on individual stocks during holding 

periods of different length on option-implied beta, gamma and other firm-specific variables 

(i.e. size, book-to-market ratio, historical return during previous 12 to 2 month, historical 

return during previous 1 month, bid-ask spread, and stock trading volume during previous 1 

month) at the end of each month. Then, we test whether the slope on each risk factor has 

significantly non-zero mean. If the time-series mean of the slope is significant and positive 

(negative), it indicates a significant and positive (negative) relationship between asset returns 

and the corresponding pricing factor. 

Results for firm-level cross-sectional regressions are presented in Table 3.  

[Insert Table 3 here] 

If we run firm-level cross-sectional regressions among constituents of S&P500 without 

including control variables, we obtain results shown in Panel A. In this panel, both option-

implied beta and gamma have significant average slopes. The average slope on option-

implied beta is significant and positive in 5 out of 8 cases, while the average slope on option-

implied gamma is significant and negative in 6 out of 8 cases.  
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Thus, without considering firm-specific control variables, we find that, for holding 

periods with intermediate length, option-implied beta is significantly and positively related to 

asset return, while option-implied gamma is significantly and negatively related to asset 

return. 

Then, we include different firm-specific control variables into firm-level cross-sectional 

regressions to see whether the explanatory power of option-implied beta or gamma still 

persists. The corresponding results are presented in Panel B of Table 3. In this panel, there is 

no significant relationship between asset return and option-implied beta. For option-implied 

gamma, we can find a marginally significant and negative average slope in explaining stock 

returns for 4-month holding period (-0.0059 with a p-value of 0.0703). For firm-specific 

control variables, we can find some significant average slopes. Size is significantly and 

negatively related to asset returns (i.e. the size effect). We also find the existence of the 

Book-to-Market effect (stocks with low book-to-market ratios have lower returns). We can 

find the contrarian effect based on our analysis. Furthermore, there is a significant and 

negative relationship between bid-ask spread (i.e. a proxy of liquidity risk) and asset returns, 

and the relationship between trading volume and stock returns is significant and positive.  

Thus, after including firm-specific control variables into cross-sectional regressions, the 

significance of the slope on option-implied beta or gamma is mitigated. Some of firm-specific 

effects are statistically related to individual stock returns. These results are consistent with the 

pricing anomalies documented in previous studies (such as the size effect in Banz, 1981; the 

book-to-market effect in Fama and French, 1992; the contrarian effect in De Bondt and 
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Thaler, 1985 and 1987). We can still find a marginally significant and negative average slope 

on option-implied gamma for 4-month predictive period. The cross-sectional regression 

results confirm the significance of risk premium on systematic skewness risk. 

 

4.2 Results for Fama-MacBeth Two-Stage Cross-Sectional Regressions  

We know that, for both beta and gamma calculation, we need to use option-implied 

central moments, as well as coefficients from regression by using historical information. In 

this section, we test whether the option-implied components for beta and gamma calculation 

have significant risk premiums. We use 𝑆𝑀𝑅 to denote the option-implied component of beta, 

i.e. 𝑆𝑀𝑅 =  𝑚𝑀
3  𝑄  𝜎𝑀

2  𝑄 , and 𝑆𝑆𝑅 to denote the option-implied component of gamma, i.e.  

𝑆𝑆𝑅 =   𝑘𝑀
4  𝑄 −   𝜎𝑀

2  𝑄 2  𝑚𝑀
3  𝑄 . These two components are calculated at aggregate 

level, so we use traditional two-stage Fama-MacBeth cross-sectional regressions. Instead of 

using individual stock return, we use returns on 25 portfolios constructed on size or book-to-

market ratio among constituents of the S&P500 index. First, we regress daily portfolio excess 

returns during previous 1-month period on 𝑆𝑀𝑅 and 𝑆𝑆𝑅 calculated by using options with 

different day-to-expirations. In addition, we also include 𝑆𝑀𝐵, 𝐻𝑀𝐿 and 𝑈𝑀𝐷 in the first-

stage regressions. After obtaining beta coefficients on different factors, we use them as 

explanatory variables in the second-stage regressions to get the estimation of risk premiums. 

If the risk premium on one factor is significantly different from zero, it indicates that the 

pricing factor is priced in cross-section of stock returns. 

 [Insert Table 4 here] 
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Table 4 presents results obtained by using 25 portfolios constructed on firm size. From 

Panel A of this table, we can find that 𝑀𝐾𝑇 has significant and positive risk premium in 7 out 

of 8 cases (the only exception is for 1-month holding period). In addition, 𝑆𝑀𝑅  has a 

significant and positive risk premium in cross-section of asset returns if the holding period 

varies from 2-month to 6-month. We can also find that 𝑈𝑀𝐷 has significant and negative risk 

premium in explaining asset returns for mid- to long-term holding period. In Panel B, if 

portfolios are constructed by using value-weighting scheme, we can find similar results both 

in statistical significance and in magnitude. In addition, 𝐻𝑀𝐿 gains marginally significant 

and positive risk premium in explaining asset returns for period longer than 9 months.  

[Insert Table 5 here] 

In Table 5, we use 25 portfolios constructed on book-to-market ratio of individual firms. 

In Panel A of Table 5, it is clear that 𝑆𝑆𝑅 has significant and negative risk premium in only 

one case with 2-month holding period (-0.0333 with p-value of 0.0888). 𝑆𝑀𝐵 has significant 

and negative risk premium in explaining returns on book-to-market portfolios in all cases 

with different length of holding periods. 𝐻𝑀𝐿 gains marginally significant and positive risk 

premium in explaining asset returns for period longer than 9 months. However, if we 

construct value-weighted portfolios, we can find no significant risk premium on 𝑆𝑀𝑅 or 𝑆𝑆𝑅. 

From this subsection, through two-stage Fama-MacBeth cross-sectional regressions, we 

can find empirical evidence about positive risk premium on option-implied component for 

beta (i.e. 𝑆𝑀𝑅) in explaining cross-section of size portfolio return, and weak evidence about 

negative risk premium on option-implied component of gamma (i.e. 𝑆𝑆𝑅 ) in explaining 
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cross-section of book-to-market portfolio return. That is, in addition to common-used risk 

factors (𝑀𝐾𝑇, 𝑆𝑀𝐵, 𝐻𝑀𝐿 and 𝑈𝑀𝐷), option-implied components (𝑆𝑀𝑅 and 𝑆𝑆𝑅) used in 

our analysis have significant risk premiums in cross-section of asset returns. This indicates 

that the components used for option-implied beta and gamma calculation do incorporate 

useful information which cannot be captured by existing pricing factors. 

 

5. Conclusion 

Given the empirical evidence about the predictive power of higher moments shown in 

previous literature, we believe that the mean-variance approach cannot fully describe capital 

markets. In addition to the systematic variance risk, this study takes higher moments of asset 

returns into consideration, and focuses on the systematic skewness risk of individual stocks in 

addition to systematic variance risk.  

In this study, we assume that the predictive power of aggregate skewness documented in 

previous studies is due to the systematic skewness risk, which is measured by gamma 

proposed in Kraus and Litzenberger (1976). Rather than using historical data for pricing 

factors’ calculation, we incorporate forward-looking information. The results reveal that, in 

addition to beta, gamma is also an important factor in asset pricing. The empirical results for 

double-sorting portfolio level analysis in this study confirm that option-implied beta is 

positively related to asset return, while option-implied gamma is negatively related to asset 

return. 

In order to make sure whether option-implied beta and gamma are priced in cross-
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section of asset returns, we run cross-sectional regressions. First, through firm-level cross-

sectional regressions, we can verify that the relationship between asset return and option-

implied beta is significant and positive, while the relationship between asset return and 

option-implied gamma is significant and negative. The significance of risk premium on 

option-implied gamma is even stronger than that of option-implied beta. Furthermore, we 

also examine whether option-implied components used for beta and gamma calculation have 

significant risk premiums by using two-stage Fama-MacBeth cross-sectional regressions. The 

results confirm the importance of option-implied components used in calculating option-

implied beta and gamma. 

Overall, this study provide empirical evidence that, in addition to systematic variance 

risk, systematic skewness risk is of great importance in explaining time-series and cross-

section of stock returns. Furthermore, using option-implied information in asset pricing 

incorporates useful information about future market conditions. 
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Figure 1: Model-Free Central Moments of the S&P500 Index 
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Table 1: Results for Quintile Portfolios Constructed on Option-Implied Beta While 

Controlling for Option-Implied Gamma 

Note: In order to form quintile portfolios among constituents of the S&P500 index, we first run the following 

time-series regression: 

𝑅𝑖 ,𝑡 − 𝑅𝑓 ,𝑡 = 𝑐0𝑖 + 𝑐1𝑖 𝑅𝑀,𝑡 − 𝑅𝑓 ,𝑡 + 𝑐2𝑖 𝑅𝑀,𝑡 − 𝐸[𝑅𝑀 ,𝑡] 
2
 

Then, we use 𝑐1𝑖  and 𝑐2𝑖  to calculate option-implied beta and gamma: 

𝛽𝑖
𝑄 = 𝑐1𝑖 + 𝑐2𝑖  𝑚𝑀

3  𝑄  𝜎𝑀
2  𝑄   

𝛾𝑖
𝑄 = 𝑐1𝑖 + 𝑐2𝑖   𝑘𝑀

4  𝑄 −   𝜎𝑀
2  𝑄 2  𝑚𝑀

3  𝑄   

 𝜎𝑀
2  𝑄 ,  𝑚𝑀

3  𝑄  and  𝑘𝑀
4  𝑄  are calculated under risk-neutral measure by using the method derived in Bakshi, 

Kapadia and Madan (2003). To calculate model-free central moments, we use options with different day-to-

maturity. First, we divide all individual stocks into five quintiles based on option-implied gamma. Within each 

gamma quintiles, we construct 5 portfolios on option-implied beta. Then, we average returns on 5 portfolios 

with similar option-implied beta across option-implied gamma quintiles. After the portfolio formation, the 

holding period is the same as the day-to-maturity of options. “EW” means that the portfolio is constructed by 

equally weighting all constituents, while “VW” means that the portfolio is constructed by using value-weighted 

scheme. 

 

  
1 2 3 4 5 5-1 p-value 

1M 
EW 0.0081 0.0080 0.0096 0.0111 0.0105 0.0024 (0.6253) 

VW 0.0068 0.0058 0.0087 0.0073 0.0078 0.0010 (0.8126) 

2M 
EW 0.0173 0.0175 0.0188 0.0227 0.0222 0.0048 (0.4879) 

VW 0.0142 0.0149 0.0149 0.0161 0.0165 0.0023 (0.7129) 

3M 
EW 0.0256 0.0267 0.0287 0.0340 0.0322 0.0067 (0.4098) 

VW 0.0219 0.0233 0.0238 0.0255 0.0242 0.0024 (0.7626) 

4M 
EW 0.0342 0.0368 0.0393 0.0452 0.0428 0.0086 (0.3571) 

VW 0.0288 0.0299 0.0329 0.0351 0.0327 0.0039 (0.6734) 

5M 
EW 0.0430 0.0489 0.0489 0.0562 0.0531 0.0101 (0.3140) 

VW 0.0360 0.0403 0.0412 0.0438 0.0412 0.0052 (0.6048) 

6M 
EW 0.0527 0.0592 0.0590 0.0671 0.0652 0.0126 (0.2526) 

VW 0.0432 0.0493 0.0496 0.0534 0.0499 0.0067 (0.5431) 

9M 
EW 0.0816 0.0891 0.0899 0.1016 0.1015 0.0200 (0.1300) 

VW 0.0675 0.0718 0.0753 0.0818 0.0796 0.0121 (0.3649) 

12M 
EW 0.1089 0.1185 0.1236 0.1345 0.1384 0.0295** (0.0493) 

VW 0.0909 0.0992 0.1036 0.1036 0.1095 0.0186 (0.2271) 
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Table 2: Results for Quintile Portfolios Constructed on Option-Implied Gamma While 

Controlling for Option-Implied Beta 

Note: In order to form quintile portfolios among constituents of the S&P500 index, we first run the following 

time-series regressions 

𝑅𝑖 ,𝑡 − 𝑅𝑓 ,𝑡 = 𝑐0𝑖 + 𝑐1𝑖 𝑅𝑀,𝑡 − 𝑅𝑓 ,𝑡 + 𝑐2𝑖 𝑅𝑀,𝑡 − 𝐸[𝑅𝑀 ,𝑡] 
2
 

Then, we use 𝑐1𝑖  and 𝑐2𝑖  to calculate option-implied beta and gamma: 

𝛽𝑖
𝑄 = 𝑐1𝑖 + 𝑐2𝑖  𝑚𝑀

3  𝑄  𝜎𝑀
2  𝑄   

𝛾𝑖
𝑄 = 𝑐1𝑖 + 𝑐2𝑖   𝑘𝑀

4  𝑄 −   𝜎𝑀
2  𝑄 2  𝑚𝑀

3  𝑄   

 𝜎𝑀
2  𝑄 ,  𝑚𝑀

3  𝑄  and  𝑘𝑀
4  𝑄  are calculated under risk-neutral measure by using the method derived in Bakshi, 

Kapadia and Madan (2003). To calculate model-free central moments, we use options with different day-to-

maturity. First, we divide all individual stocks into five quintiles based on option-implied beta. Within each beta 

quintiles, we construct 5 portfolios on option-implied gamma. Then, we average returns on 5 portfolios with 

similar option-implied gamma across option-implied beta quintiles. After the portfolio formation, the holding 

period is the same as the day-to-maturity of options. “EW” means that the portfolio is constructed by equally 

weighting all constituents, while “VW” means that the portfolio is constructed by using value-weighted scheme. 

 

  
1 2 3 4 5 5-1 p-value 

1M 
EW 0.0116 0.0099 0.0101 0.0069 0.0088 -0.0028 (0.2898) 

VW 0.0103 0.0065 0.0076 0.0048 0.0069 -0.0034 (0.1839) 

2M 
EW 0.0235 0.0199 0.0189 0.0180 0.0182 -0.0053 (0.2342) 

VW 0.0199 0.0139 0.0152 0.0135 0.0140 -0.0058 (0.1469) 

3M 
EW 0.0338 0.0296 0.0285 0.0283 0.0271 -0.0067 (0.2075) 

VW 0.0281 0.0197 0.0227 0.0231 0.0214 -0.0067 (0.1911) 

4M 
EW 0.0440 0.0411 0.0379 0.0387 0.0366 -0.0074 (0.2633) 

VW 0.0359 0.0310 0.0288 0.0312 0.0281 -0.0078 (0.2059) 

5M 
EW 0.0524 0.0527 0.0486 0.0479 0.0484 -0.0040 (0.5874) 

VW 0.0419 0.0420 0.0357 0.0385 0.0380 -0.0039 (0.5820) 

6M 
EW 0.0623 0.0653 0.0598 0.0578 0.0580 -0.0043 (0.5986) 

VW 0.0481 0.0541 0.0448 0.0456 0.0474 -0.0007 (0.9316) 

9M 
EW 0.0974 0.0996 0.0942 0.0879 0.0848 -0.0126 (0.1940) 

VW 0.0750 0.0817 0.0691 0.0724 0.0714 -0.0036 (0.7038) 

12M 
EW 0.1355 0.1327 0.1243 0.1180 0.1134 -0.0221* (0.0525) 

VW 0.1057 0.1099 0.0952 0.0932 0.0981 -0.0077 (0.4898) 
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Table 3: Firm-Level Cross-Sectional Regression Results 

At the end of each calendar month, we regress individual stocks’ returns during holding period with different length on option-implied beta and gamma with and without the 

inclusion of different firm-specific factors at the end of each calendar month: 

𝑅𝑖 = 𝑎𝑖 + 𝑏𝛽𝛽𝑖 + 𝑏𝛾𝛾𝑖  

𝑅𝑖 = 𝑎𝑖 + 𝑏𝛽𝛽𝑖 + 𝑏𝛾𝛾𝑖 + 𝑏𝑠𝑖𝑧𝑒 𝑠𝑖𝑧𝑒𝑖 + 𝑏𝐵/𝑀𝐵/𝑀𝑖 + 𝑏𝑅𝑒𝑡12𝑡𝑜2𝑀𝑅𝑒𝑡12𝑡𝑜2𝑀𝑖 + 𝑏𝑅𝑒𝑡1𝑀𝑅𝑒𝑡1𝑀𝑖 + 𝑏𝑏𝑖𝑑 −𝑎𝑠𝑘𝑠𝑝𝑟𝑒𝑎𝑑 𝑏𝑖𝑑 − 𝑎𝑠𝑘𝑠𝑝𝑟𝑒𝑎𝑑𝑖 + 𝑏𝑣𝑜𝑙𝑣𝑜𝑙𝑖 + 𝜀𝑖  

The length of the holding period is the same as the time-to-maturity of options used for beta and gamma calculation. Then, we test whether slopes on different factors have 

significantly non-zero mean through t-test. 

 

Panel A: Firm Level Cross-Sectional Regression Results without Control Variables 

 1M 2M 3M 4M 5M 6M 9M 12M 

Intercept 0.0053* 0.0110** 0.0168*** 0.0222*** 0.0282*** 0.0338*** 0.0550*** 0.0744*** 

p-value (0.0946) (0.0174) (0.0040) (0.0013) (0.0005) (0.0002) (0.0000) (0.0000) 

𝑏𝛽  0.0054 0.0119 0.0181 0.0248* 0.0299* 0.0355** 0.0459** 0.0564** 

p-value (0.3466) (0.1808) (0.1137) (0.0735) (0.0633 (0.0479) (0.0309) (0.0241) 

𝑏𝛾  -0.0013 -0.0036 -0.0061* -0.0085** -0.0096** -0.0109** -0.0116** -0.0109* 

p-value (0.3508) (0.1157) (0.0500) (0.0303) (0.0372) (0.0270) (0.0327) (0.0694) 
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(Continued) 

Panel B: Firm Level Cross-Sectional Regression Results with Control Variables 

 
1M 2M 3M 4M 5M 6M 9M 12M 

Intercept 0.0053* 0.0105** 0.0163*** 0.0212*** 0.0280*** 0.0356*** 0.0568*** 0.0793*** 

p-value (0.0765) (0.0137) (0.0016) (0.0005) (0.0001) (0.0000) (0.0000) (0.0000) 

𝑏𝛽  0.0024 0.0052 0.0085 0.0127 0.0135 0.0134 0.0143 0.0201 

p-value (0.6246) (0.4735) (0.3415) (0.2498) (0.2826) (0.3287) (0.3841) (0.3023) 

𝑏𝛾  -0.0011 -0.0024 -0.0041 -0.0059* -0.0058 -0.0056 -0.0041 -0.0031 

p-value (0.4100) (0.2310) (0.1079) (0.0703) (0.1202) (0.1598) (0.3544) (0.5387) 

𝑏𝑠𝑖𝑧𝑒  -0.0154 -0.0301 -0.0466 -0.0622* -0.0797* -0.1036** -0.1481** -0.1818** 

p-value (0.3871) (0.2508) (0.1293) (0.0885) (0.0591) (0.0255) (0.0228) (0.0264) 

𝑏𝐵/𝑀  0.0037* 0.0064** 0.0090** 0.0113** 0.0130*** 0.0142** 0.0254*** 0.0318*** 

p-value (0.0971) (0.0304) (0.0137) (0.0102) (0.0094) (0.0104) (0.0004) (0.0002) 

𝑏𝑅𝑒𝑡12𝑡𝑜2𝑀 -0.0046 -0.0070 -0.0105 -0.0129 -0.0167 -0.0231* -0.0313* -0.0297 

p-value (0.3332) (0.3199) (0.2021) (0.1877) (0.1522) (0.0890) (0.0596) (0.1181) 

𝑏𝑅𝑒𝑡1𝑀 -0.0164** -0.0317*** -0.0244* -0.0334** -0.0257 -0.0196 -0.0134 -0.0174 

p-value (0.0477) (0.0085) (0.0995) (0.0351) (0.1705) (0.3716) (0.6357) (0.5953) 

𝑏𝑏𝑖𝑑−𝑎𝑠𝑘𝑠𝑝𝑟𝑒𝑎𝑑  -0.0059 -0.0149 -0.0202 -0.0347 -0.0398 -0.0529 -0.0939** -0.1420** 

p-value (0.7016) (0.4664) (0.4107) (0.1963) (0.1649) (0.1217) (0.0477) (0.0184) 

𝑏𝑣𝑜𝑙  0.7825 1.4533 2.2430 2.4358 3.2695 4.6073* 8.8461** 11.5051** 

p-value (0.5033) (0.3839) (0.2199) (0.2349) (0.1607) (0.0560) (0.0142) (0.0184) 

 

  



 

29 

Table 4: Two-Stage Fama-MacBeth Cross-Sectional Regression Results Using 25 Size Portfolios 

Note: At the end of each calendar month, we form 25 portfolios based on firm size and calculate equally-weighted and value-weighted returns on each trading day during 

previous one month, as well as returns in following months. In the first step of cross-sectional regressions, we regress daily returns on each portfolio during previous one 

month on different market-based pricing factors to obtain factor loadings.  

𝑟𝑝 ,𝑡 − 𝑟𝑓 ,𝑡 = 𝑎𝑝 + 𝛽𝑝 ,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑝 ,𝑆𝑀𝑅𝑆𝑀𝑅𝑡 + 𝛽𝑝 ,𝑆𝑆𝑅𝑆𝑆𝑅𝑡 + 𝛽𝑝 ,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑝 ,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑝 ,𝑈𝑀𝐷𝑈𝑀𝐷𝑡  

where 𝑆𝑀𝑅 =  𝑚𝑀
3  𝑄  𝜎𝑀

2  𝑄  and 𝑆𝑆𝑅 =   𝑘𝑀
4  𝑄 −   𝜎𝑀

2  𝑄 2  𝑚𝑀
3  𝑄 . Then, in the second step, we regress holding period returns on 25 portfolios on factor loadings cross-

sectionally to obtain gamma. 

𝑟𝑝 − 𝑟𝑓 = 𝑎𝑝 + 𝛾𝑀𝐾𝑇𝛽𝑝 ,𝑀𝐾𝑇 + 𝛾𝑆𝑀𝑅𝛽𝑝 ,𝑆𝑀𝑅 + 𝛾𝑆𝑆𝑅𝛽𝑝 ,𝑆𝑆𝑅 + 𝛾𝑆𝑀𝐵𝛽𝑝 ,𝑆𝑀𝐵 + 𝛾𝐻𝑀𝐿𝛽𝑝 ,𝐻𝑀𝐿 + 𝛾𝑈𝑀𝐷𝛽𝑝 ,𝑈𝑀𝐷  

Finally, we use the hypothesis test to make sure whether different pricing factors have significant risk premiums in cross-section of stock returns (i.e. whether mean of 

gamma is different from zero). 

Panel A: Results for Fama-MacBeth Cross-Sectional Regressions Using Equally-Weighted Portfolios 

 
30-Day 60-Day 91-Day 122-Day 152-Day 182-Day 273-Day 365-Day 

intercept 0.0046 0.0055 0.0044 0.0067 0.0075 0.0083 0.0199 0.0330** 

p-value (0.2644) (0.3335) (0.5079) (0.3702) (0.3615) (0.3743) (0.1022) (0.0197) 

𝛾𝑀𝐾𝑇  0.0036 0.0116* 0.0216*** 0.0281*** 0.0361*** 0.0438*** 0.0596*** 0.0746*** 

p-value (0.4157) (0.0541) (0.0024) (0.0006) (0.0001) (0.0001) (0.0000) (0.0000) 

𝛾𝑆𝑀𝑅  0.0053 0.0138*** 0.0164** 0.0206*** 0.0205** 0.0220** 0.0155 0.0180 

p-value (0.1377) (0.0060) (0.0194) (0.0071) (0.0299) (0.0286) (0.2022) (0.1874) 

𝛾𝑆𝑆𝑅  0.0205 -0.0102 0.0001 0.0003 0.0008 -0.0009 -0.0223 -0.0935 

p-value (0.5893) (0.6000) (0.9954) (0.9901) (0.9761) (0.9768) (0.6710) (0.2596) 

𝛾𝑆𝑀𝐵  -0.0018 0.0021 -0.0006 -0.0009 0.0010 -0.0009 -0.0063 -0.0081 

p-value (0.3997) (0.5015) (0.8649) (0.8393) (0.8367) (0.8604) (0.3498) (0.3191) 

𝛾𝐻𝑀𝐿  0.0008 0.0019 0.0043 0.0048 0.0069 0.0084 0.0125 0.0171* 

p-value (0.7281) (0.5759) (0.2758) (0.2935) (0.2046) (0.1833) (0.1061) (0.0706) 

𝛾𝑈𝑀𝐷  -0.0009 -0.0022 -0.0067 -0.0098 -0.0144* -0.0220** -0.0422*** -0.0517*** 

p-value (0.7927) (0.6738) (0.2475) (0.1482) (0.0740) (0.0254) (0.0006) (0.0006) 
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(Continued) 

 

Panel B: Results for Fama-MacBeth Cross-Sectional Regressions Using Value-Weighted Portfolios 

 
30-Day 60-Day 91-Day 122-Day 152-Day 182-Day 273-Day 365-Day 

intercept 0.0044 0.0055 0.0044 0.0069 0.0078 0.0082 0.0198* 0.0320** 

p-value (0.2846) (0.3389) (0.5128) (0.3479) (0.3401) (0.3715) (0.0967) (0.0211) 

𝛾𝑀𝐾𝑇  0.0036 0.0113* 0.0213*** 0.0273*** 0.0351*** 0.0434*** 0.0593*** 0.0748*** 

p-value (0.4089) (0.0548) (0.0024) (0.0006) (0.0001) (0.0000) (0.0000) (0.0000) 

𝛾𝑆𝑀𝑅  0.0054 0.0131*** 0.0145** 0.0190** 0.0202** 0.0222** 0.0193 0.0233* 

p-value (0.1218) (0.0094) (0.0407) (0.0115) (0.0271) (0.0239) (0.1153) (0.0785) 

𝛾𝑆𝑆𝑅  0.0108 -0.0189 -0.0054 -0.0020 -0.0036 -0.0040 -0.0231 -0.0980 

p-value (0.7653) (0.3222) (0.7993) (0.9273) (0.8915) (0.8972) (0.6495) (0.2231) 

𝛾𝑆𝑀𝐵  -0.0021 0.0020 -0.0006 -0.0010 0.0006 -0.0011 -0.0059 -0.0084 

p-value (0.3163) (0.5103) (0.8665) (0.8146) (0.8990) (0.8262) (0.3679) (0.2833) 

𝛾𝐻𝑀𝐿  0.0010 0.0018 0.0041 0.0050 0.0074 0.0082 0.0137* 0.0184** 

p-value (0.6494) (0.5903) (0.2860) (0.2645) (0.1632) (0.1709) (0.0682) (0.0444) 

𝛾𝑈𝑀𝐷  -0.0011 -0.0018 -0.0065 -0.0097 -0.0143* -0.0212** -0. 0419*** -0.0520*** 

p-value (0.7446) (0.7224) (0.2535) (0.1453) (0.0695) (0.0253) (0.0004) (0.0004) 
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Table 5: Two-Stage Fama-MacBeth Cross-Sectional Regression Results Using 25 Book-to-Market Portfolios 

Note: At the end of each calendar month, we form 25 portfolios based on book-to-market ratio and calculate equally-weighted and value-weighted returns on each trading day 

during previous one month, as well as returns in following months. In the first step of cross-sectional regressions, we regress daily returns on each portfolio during previous 

one month on different market-based pricing factors to obtain factor loadings.  

𝑟𝑝 ,𝑡 − 𝑟𝑓 ,𝑡 = 𝑎𝑝 + 𝛽𝑝 ,𝑀𝐾𝑇𝑀𝐾𝑇𝑡 + 𝛽𝑝 ,𝑆𝑀𝑅𝑆𝑀𝑅𝑡 + 𝛽𝑝 ,𝑆𝑆𝑅𝑆𝑆𝑅𝑡 + 𝛽𝑝 ,𝑆𝑀𝐵𝑆𝑀𝐵𝑡 + 𝛽𝑝 ,𝐻𝑀𝐿𝐻𝑀𝐿𝑡 + 𝛽𝑝 ,𝑈𝑀𝐷𝑈𝑀𝐷𝑡  

where 𝑆𝑀𝑅 =  𝑚𝑀
3  𝑄  𝜎𝑀

2  𝑄  and 𝑆𝑆𝑅 =   𝑘𝑀
4  𝑄 −   𝜎𝑀

2  𝑄 2  𝑚𝑀
3  𝑄 . Then, in the second step, we regress holding period returns on 25 portfolios on factor loadings cross-

sectionally to obtain gamma.  

𝑟𝑝 − 𝑟𝑓 = 𝑎𝑝 + 𝛾𝑀𝐾𝑇𝛽𝑝 ,𝑀𝐾𝑇 + 𝛾𝑆𝑀𝑅𝛽𝑝 ,𝑆𝑀𝑅 + 𝛾𝑆𝑆𝑅𝛽𝑝 ,𝑆𝑆𝑅 + 𝛾𝑆𝑀𝐵𝛽𝑝 ,𝑆𝑀𝐵 + 𝛾𝐻𝑀𝐿𝛽𝑝 ,𝐻𝑀𝐿 + 𝛾𝑈𝑀𝐷𝛽𝑝 ,𝑈𝑀𝐷  

Finally, we use the hypothesis test to make sure whether different pricing factors have significant risk premiums in cross-section of stock returns (i.e. whether mean of 

gamma is different from zero). 

Panel A: Results for Fama-MacBeth Cross-Sectional Regressions Using Equally-Weighted Portfolios 

 
30-Day 60-Day 91-Day 122-Day 152-Day 182-Day 273-Day 365-Day 

intercept 0.0123*** 0.0199*** 0.0267*** 0.0373*** 0.0464*** 0.0537*** 0.0795*** 0.1038*** 
p-value (0.0010) (0.0004) (0.0001) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
𝛾𝑀𝐾𝑇  -0.0032 -0.0014 0.0016 0.0007 0.0017 0.0040 0.0071 0.0129 

p-value (0.3698) (0.8095) (0.8221) (0.9308) (0.8640) (0.7299) (0.5750) (0.3946) 
𝛾𝑆𝑀𝑅  0.0024 0.0053 0.0047 -0.0044 0.0018 0.0031 0.0054 0.0123 

p-value (0.4969) (0.2925) (0.5167) (0.5763) (0.8480) (0.7368) (0.6444) (0.4026) 
𝛾𝑆𝑆𝑅  0.0215 -0.0333* -0.0335 -0.0272 -0.0220 -0.0133 0.0135 0.0114 

p-value (0.2619) (0.0888) (0.1634) (0.2841) (0.4787) (0.6945) (0.8060) (0.8849) 
𝛾𝑆𝑀𝐵  -0.0035* -0.0053* -0.0075** -0.0110** -0.0119** -0.0106* -0.0127* -0.0167** 

p-value (0.0792) (0.0674) (0.0348) (0.0161) (0.0184) (0.0608) (0.0558) (0.0431) 
𝛾𝐻𝑀𝐿  0.0008 0.0020 0.0029 0.0039 0.0051 0.0074 0.0124* 0.0152* 

p-value (0.6903) (0.4728) (0.3938) (0.3388) (0.3014) (0.1798) (0.0599) (0.0547) 
𝛾𝑈𝑀𝐷  -0.0014 -0.0013 -0.0032 -0.0052 -0.0055 -0.0044 -0.0116 -0.0168 

p-value (0.6482) (0.7696) (0.5455) (0.4111) (0.4568) (0.6022) (0.2308) (0.1588) 
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(Continued) 

 

Panel B: Results for Fama-MacBeth Cross-Sectional Regressions Using Value-Weighted Portfolios 

 
30-Day 60-Day 91-Day 122-Day 152-Day 182-Day 273-Day 365-Day 

intercept 0.0158*** 0.0194*** 0.0250*** 0.0302*** 0.0358*** 0.0420*** 0.0702*** 0.1002*** 
p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 
𝛾𝑀𝐾𝑇  -0.0086** -0.0047 -0.0018 0.0014 0.0045 0.0062 0.0041 0.0007 

p-value (0.0289) (0.4039) (0.7906) (0.8573) (0.6300) (0.5433) (0.7280) (0.9628) 
𝛾𝑆𝑀𝑅  -0.0009 0.0019 0.0068 0.0085 0.0135 0.0114 0.0074 0.0013 

p-value (0.7880) (0.7184) (0.3224) (0.2760) (0.1187) (0.2436) (0.5270) (0.9232) 
𝛾𝑆𝑆𝑅  0.0064 -0.0114 -0.0048 0.0168 0.0271 0.0218 0.0308 0.0409 

p-value (0.8368) (0.5777) (0.8373) (0.4791) (0.3180) (0.4775) (0.5059) (0.5294) 
𝛾𝑆𝑀𝐵  -0.0004 -0.0042 -0.0039 -0.0038 -0.0029 -0.0049 -0.0065 -0.0126* 

p-value (0.8412) (0.1675) (0.2538) (0.3855) (0.5302) (0.3394) (0.2955) (0.0999) 
𝛾𝐻𝑀𝐿  0.0010 0.0016 0.0015 0.0018 0.0016 0.0032 0.0065 0.0109 

p-value (0.5800) (0.5400) (0.6389) (0.6522) (0.7158) (0.5311) (0.2924) (0.1446) 
𝛾𝑈𝑀𝐷  0.0004 0.0006 -0.0044 -0.0056 -0.0057 -0.0024 -0.0081 -0.0130 

p-value (0.8953) (0.8900) (0.3700) (0.3145) (0.3588) (0.7398) (0.3655) (0.2357) 

 

 

 


